B Catling 2 Top Risks Of B Catling

Schoepp-Cothenet, B. et al. The ineluctable claim for the trans-iron elements molybdenum and/or tungsten in the agent of life. Sci. Rep. 2, 263 (2012).



b catling
 B

B | b catling

PubMed  PubMed Central  Google Scholar 

Nitschke, W. & Russell, M. J. Beating the acetyl coenzyme A-pathway to the agent of life. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 368, 20120258 (2013).

PubMed  PubMed Central  Google Scholar 



Schoepp-Cothenet, B. et al. On the accepted amount of bioenergetics. Biochim. Biophys. Acta 1827, 79–93 (2013).

CAS  PubMed  PubMed Central  Google Scholar 

Sousa, F. L. et al. Early bioenergetic evolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20130088 (2013).

PubMed  PubMed Central  Google Scholar 

Grimaldi, S., Schoepp-Cothenet, B., Ceccaldi, P., Guigliarelli, B. & Magalon, A. The prokaryotic Mo/W-bisPGD enzymes family: A catalytic crammer in bioenergetic. Biochim. Biophys. Acta 1827, 1048–1085 (2013).

CAS  PubMed  PubMed Central  Google Scholar 

Abin, C. A. & Hollibaugh, J. T. Transcriptional acknowledgment of the astrict anaerobe Desulfuribacillus stibiiarsenatis MLFW-2T to advance on antimonate and added terminal electron acceptors. Environ. Microbiol. 21, 618–630 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Shi, L.-D. et al. Multi-omics acknowledge assorted abeyant antimonate reductases from phylogenetically assorted microorganisms. Appl. Microbiol. Biotechnol. 103, 9119–9129 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Bilous, P. T., Cole, S. T., Anderson, W. F. & Weiner, J. H. Nucleotide arrangement of the dmsABC operon encoding the anaerobic dimethylsulphoxide reductase of Escherichia coli. Mol. Microbiol. 2, 785–795 (1988).

CAS  PubMed  PubMed Central  Google Scholar 

Weiner, J. H., MacIsaac, D. P., Bishop, R. E. & Bilous, P. T. Purification and backdrop of Escherichia coli dimethyl sulfoxide reductase, an iron-sulfur molybdoenzyme with ample substrate specificity. J. Bacteriol. 170, 1505–1510 (1988).

CAS  PubMed  PubMed Central  Google Scholar 

Cammack, R. & Weiner, J. H. Electron paramagnetic resonance spectroscopic assuming of dimethyl sulfoxide reductase of Escherichia coli. Biochemistry 29, 8410–8416 (1990).

CAS  Google Scholar 

Schindelin, H., Kisker, C., Hilton, J., Rajagopalan, K. V. & Rees, D. C. Clear anatomy of DMSO reductase: Redox-linked changes in molybdopterin coordination. Science 272, 1615–1621 (1996).

ADS  CAS  PubMed  PubMed Central  Google Scholar 

Schneider, F. et al. Clear anatomy of dimethyl sulfoxide reductase from Rhodobacter capsulatus at 1.88 Å resolution. J. Mol. Biol. 263, 53–69 (1996).

CAS  PubMed  PubMed Central  Google Scholar 

Rothery, R. A., Workun, G. J. & Weiner, J. H. The prokaryotic circuitous iron–sulfur molybdoenzyme family. Biochim. Biophys. Acta 1778, 1897–1929 (2008).

CAS  PubMed  PubMed Central  Google Scholar 

Hille, R., Hall, J. & Basu, P. The mononuclear molybdenum enzymes. Chem. Rev. 114, 3963–4038 (2014).

CAS  PubMed  PubMed Central  Google Scholar 

McEwan, A. G., Ridge, J. P., McDevitt, C. A. & Hugenholtz, P. The DMSO reductase ancestors of microbial molybdenum enzymes: Molecular backdrop and role in the dissimilatory abridgement of baneful elements. Geomicrobiol. J. 19, 3–21 (2002).

CAS  Google Scholar 

Sparacino-Watkins, C., Stolz, J. F. & Basu, P. Nitrate and periplasmic nitrate reductases. Chem. Soc. Rev. 43, 676–706 (2014).

CAS  PubMed  PubMed Central  Google Scholar 

Sforna, M. C. et al. Evidence for arsenic metabolism and cycling by microorganisms 2.7 billion years ago. Nat. Geosci. 7, 811–815 (2014).

ADS  CAS  Google Scholar 

Stolz, J. F., Basu, P., Santini, J. M. & Oremland, R. S. Arsenic and selenium in microbial metabolism. Annu. Rev. Microbiol. 60, 107–130 (2006).

CAS  PubMed  PubMed Central  Google Scholar 

Zargar, K., Hoeft, S., Oremland, R. & Saltikov, C. W. Identification of a atypical arsenite oxidase gene, arxA, in the haloalkaliphilic, arsenite-oxidizing bacillus Alkalilimnicola ehrlichii ache MLHE-1. J. Bacteriol. 192, 3755–3762 (2010).

CAS  PubMed  PubMed Central  Google Scholar 

Zargar, K. et al. ArxA, a new clade of arsenite oxidase aural the DMSO reductase ancestors of molybdenum oxidoreductases. Environ. Microbiol. 14, 1635–1645 (2012).

CAS  PubMed  PubMed Central  Google Scholar 

Kulp, T. R. et al. Arsenic(III) fuels anoxygenic photosynthesis in hot bounce biofilms from Mono Lake California. Science 321, 967–970 (2008).

ADS  CAS  PubMed  Google Scholar 

Stolz, J. F. Gaia and her microbiome. FEMS Microbiol. Ecol. 93, flw247 (2017).

Google Scholar 

Oremland, R. S., Saltikov, C. W., Wolfe-Simon, F. & Stolz, J. F. Arsenic in the change of Earth and exoteric ecosystems. Geomicrobiol. J. 26, 522–536 (2009).

CAS  Google Scholar 

Lebrun, E. et al. Arsenite oxidase, an age-old bioenergetic enzyme. Mol. Biol. Evol. 20, 686–693 (2003).

CAS  PubMed  PubMed Central  Google Scholar 

Duval, S., Ducluzeau, A.-L., Nitschke, W. & Schoepp-Cothenet, B. Agitator phylogenies as markers for the blaze accompaniment of the environment: The case of respiratory arsenate reductase and accompanying enzymes. BMC Evol. Biol. 8, 206 (2008).

PubMed  PubMed Central  Google Scholar 

van Lis, R., Nitschke, W., Duval, S. & Schoepp-Cothenet, B. Arsenics as bioenergetic substrates. Biochim. Biophys. Acta 1827, 176–188 (2013).

PubMed  PubMed Central  Google Scholar 

Ducluzeau, A.-L. et al. Was nitric oxide the aboriginal abysmal electron sink?. Trends Biochem. Sci. 34, 9–15 (2009).

CAS  PubMed  PubMed Central  Google Scholar 

Harel, A., Häggblom, M. M., Falkowski, P. G. & Yee, N. Change of prokaryotic respiratory molybdoenzymes and the abundance of their genomic co-occurrence. FEMS Microbiol. Ecol. 92, 187 (2016).

Google Scholar 

Edwardson, C. F. & Hollibaugh, J. T. Metatranscriptomic assay of prokaryotic communities alive in sulfur and arsenic cycling in Mono Lake, California, USA. ISME J. 11, 2195–2208 (2017).

b catling
 The Erstwhile, B. Catling’s sequel to The Vorrh (Book ..

The Erstwhile, B. Catling’s sequel to The Vorrh (Book .. | b catling

CAS  PubMed  PubMed Central  Google Scholar 

Huelsenbeck, J. P., Ronquist, F., Nielsen, R. & Bollback, J. P. Bayesian inference of phylogeny and its appulse on evolutionary biology. Science 294, 2310–2314 (2001).

ADS  CAS  PubMed  PubMed Central  Google Scholar 

Huelsenbeck, J. P. & Crandall, K. A. Phylogeny admiration and antecedent testing application best likelihood. Annu. Rev. Ecol. Syst. 28, 437–466 (1997).

Google Scholar 

Weiss, M. C. et al. The assay and abode of the aftermost accepted accepted ancestor. Nat. Microbiol. 1, 16116 (2016).

CAS  Google Scholar 

Wu, D. et al. A phylogeny-driven genomic encyclopaedia of Bacilli and Archaea. Nature 462, 1056–1060 (2009).

ADS  CAS  PubMed  PubMed Central  Google Scholar 

Mukherjee, S. et al. 1,003 advertence genomes of bacterial and archaeal isolates aggrandize advantage of the timberline of life. Nat. Biotechnol. 35, 676–683 (2017).

CAS  Google Scholar 

Krafft, T. et al. Cloning and nucleotide arrangement of the psrA gene of Wolinella succinogenes polysulphide reductase. Eur. J. Biochem. 206, 503–510 (1992).

CAS  PubMed  PubMed Central  Google Scholar 

Heinzinger, N. K., Fujimoto, S. Y., Clark, M. A., Moreno, M. S. & Barrett, E. L. Arrangement assay of the phs operon in Salmonella typhimurium and the addition of thiosulfate abridgement to anaerobic activity metabolism. J. Bacteriol. 177, 2813–2820 (1995).

CAS  PubMed  PubMed Central  Google Scholar 

Wells, M. et al. Respiratory selenite reductase from Bacillus selenitireducens ache MLS10. J. Bacteriol. 201, e00614-e618 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Hensel, M., Hinsley, A. P., Nikolaus, T., Sawers, G. & Berks, B. C. The abiogenetic base of tetrathionate respiration in Salmonella typhimurium. Mol. Microbiol. 32, 275–287 (1999).

CAS  PubMed  PubMed Central  Google Scholar 

Kuroda, M. et al. Molecular cloning and assuming of the srdBCA operon, encoding the respiratory selenate reductase complex, from the selenate-reducing bacillus Bacillus selenatarsenatis SF-1. J. Bacteriol. 193, 2141–2148 (2011).

CAS  PubMed  PubMed Central  Google Scholar 

Cozen, A. E. et al. Transcriptional map of respiratory versatility in the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. J. Bacteriol. 191, 782–794 (2009).

CAS  PubMed  PubMed Central  Google Scholar 

Stamatakis, A. RAxML adaptation 8: A apparatus for phylogenetic assay and post-analysis of ample phylogenies. Bioinformatics 30, 1312–1313 (2014).

CAS  PubMed  PubMed Central  Google Scholar 

Wagner, T., Ermler, U. & Shima, S. The methanogenic CO2 reducing-and-fixing agitator is bifunctional and contains 46 [4Fe–4S] clusters. Science 354, 114–117 (2016).

ADS  CAS  PubMed  PubMed Central  Google Scholar 

Sawers, G. The hydrogenases and formate dehydrogenases of Escherichia coli. Antonie Van Leeuwenhoek 66, 57–88 (1994).

CAS  PubMed  PubMed Central  Google Scholar 

Jormakka, M., Törnroth, S., Byrne, B. & Iwata, S. Molecular base of proton motive force generation: Anatomy of formate dehydrogenase-N. Science 295, 1863–1868 (2002).

ADS  PubMed  PubMed Central  Google Scholar 

Raaijmakers, H. et al. Gene arrangement and the 1.8 Å clear anatomy of the tungsten-containing formate dehydrogenase from Desulfovibrio gigas. Anatomy 10, 1261–1272 (2002).

CAS  PubMed  PubMed Central  Google Scholar 

Boyington, J. C., Gladyshev, V. N., Khangulov, S. V., Stadtman, T. C. & Sun, P. D. Clear anatomy of formate dehydrogenase H: Catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster. Science 275, 1305–1308 (1997).

CAS  PubMed  PubMed Central  Google Scholar 

Khangulov, S. V., Gladyshev, V. N., Dismukes, G. C. & Stadtman, T. C. Selenium-containing formate dehydrogenase H from Escherichia coli: A molybdopterin agitator that catalyzes formate blaze after oxygen transfer. Biochemistry 37, 3518–3528 (1998).

CAS  PubMed  PubMed Central  Google Scholar 

Oh, J. I. & Bowien, B. Structural assay of the fds operon encoding the NAD -linked formate dehydrogenase of Ralstonia eutropha. J. Biol. Chem. 273, 26349–26360 (1998).

CAS  PubMed  PubMed Central  Google Scholar 

Niks, D., Duvvuru, J., Escalona, M. & Hille, R. Spectroscopic and alive backdrop of the molybdenum-containing, NAD -dependent formate dehydrogenase from Ralstonia eutropha. J. Biol. Chem. 291, 1162–1174 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Yu, X., Niks, D., Mulchandani, A. & Hille, R. Efficient abridgement of CO2 by the molybdenum-containing formate dehydrogenase from Cupriavidus necator (Ralstonia eutropha). J. Biol. Chem. 292, 16872–16879 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Stock, T. & Rother, M. Selenoproteins in Archaea and Gram-positive bacteria. Biochim. Biophys. Acta 1790, 1520–1532 (2009).

CAS  PubMed  PubMed Central  Google Scholar 

Luque-Almagro, V. M. et al. Bacterial nitrate assimilation: Gene administration and regulation. Biochem. Soc. Trans. 39, 1838–1843 (2011).

CAS  PubMed  PubMed Central  Google Scholar 

Catling, D. C. & Zahnle, K. J. The Archean atmosphere. Sci. Adv. 6, eaax1420 (2020).

ADS  PubMed  PubMed Central  Google Scholar 

Glaser, P., Danchin, A., Kunst, F., Zuber, P. & Nakano, M. M. Identification and abreast of a gene appropriate for nitrate assimilation and anaerobic advance of Bacillus subtilis. J. Bacteriol. 177, 1112–1115 (1995).

CAS  PubMed  PubMed Central  Google Scholar 

Martínez-Espinosa, R. M., Marhuenda-Egea, F. C. & Bonete, M. J. Assimilatory nitrate reductase from the haloarchaeon Haloferax mediterranei: Purification and characterisation. FEMS Microbiol. Lett. 204, 381–385 (2001).

PubMed  PubMed Central  Google Scholar 

Kilic, V., Kilic, G. A., Kutlu, H. M. & Martínez-Espinosa, R. M. Nitrate abridgement in Haloferax alexandrinus: The case of assimilatory nitrate reductase. Extremophiles 21, 551–561 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Ruiz, B. et al. The nitrate assimilatory alleyway in Sinorhizobium meliloti: Addition to NO production. Front. Microbiol. 10, 1526 (2019).

PubMed  PubMed Central  Google Scholar 

Hidalgo-García, A. et al. Rhizobium etli produces nitrous oxide by coupling the assimilatory and denitrification pathways. Front. Microbiol. 10, 980 (2019).

PubMed  PubMed Central  Google Scholar 

Flores, E., Frías, J. E., Rubio, L. M. & Herrero, A. Photosynthetic nitrate assimilation in cyanobacteria. Photosyn. Res. 83, 117–133 (2005).

CAS  PubMed  PubMed Central  Google Scholar 

Ordoñez, O. F., Rasuk, M. C., Soria, M. N., Contreras, M. & Farías, M. E. Haloarchaea from the Andean Puna: Biological role in the activity metabolism of arsenic. Microb. Ecol. 76, 695–705 (2018).

PubMed  PubMed Central  Google Scholar 

Härtig, C. et al. Chemolithotrophic advance of the aerobic hyperthermophilic bacillus Thermocrinis ruber OC 14/7/2 on monothioarsenate and arsenite. FEMS Microbiol. Ecol. 90, 747–760 (2014).

PubMed  PubMed Central  Google Scholar 

Svetlitshnyi, V., Rainey, F. & Wiegel, J. Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic, anaerobic, alkalitolerant, thermophilic bacillus utilizing short- and long-chain blubbery acids in syntrophic coculture with a methanogenic archaeum. Int. J. Syst. Bacteriol. 46, 1131–1137 (1996).

CAS  PubMed  PubMed Central  Google Scholar 

Martin, W., Baross, J., Kelley, D. & Russell, M. J. Hydrothermal vents and the agent of life. Nat. Rev. Microbiol. 6, 805–814 (2008).

CAS  PubMed  PubMed Central  Google Scholar 

Bult, C. J. et al. Complete genome arrangement of the methanogenic archaeon, Methanococcus jannaschii. Science 273, 1058–1073 (1996).

ADS  CAS  PubMed  PubMed Central  Google Scholar 

Slesarev, A. I. et al. The complete genome of hyperthermophile Methanopyrus kandleri AV19 and monophyly of archaeal methanogens. Proc. Natl. Acad. Sci. USA 99, 4644–4649 (2002).

ADS  CAS  PubMed  PubMed Central  Google Scholar 

Hendrickson, E. L. et al. Complete genome arrangement of the genetically acquiescent hydrogenotrophic methanogen Methanococcus maripaludis. J. Bacteriol. 186, 6956–6969 (2004).

CAS  PubMed  PubMed Central  Google Scholar 

Andreesen, J. R. & Ljungdahl, L. G. Nicotinamide adenine dinucleotide phosphate-dependent formate dehydrogenase from Clostridium thermoaceticum: Purification and properties. J. Bacteriol. 120, 6–14 (1974).

CAS  PubMed  PubMed Central  Google Scholar 

Graentzdoerffer, A., Rauh, D., Pich, A. & Andreesen, J. R. Molecular and biochemical assuming of two tungsten- and selenium-containing formate dehydrogenases from Eubacterium acidaminophilum that are associated with apparatus of an iron-only hydrogenase. Arch. Microbiol. 179, 116–130 (2003).

CAS  PubMed  PubMed Central  Google Scholar 

Jones, J. B., Dilworth, G. L. & Stadtman, T. C. Occurrence of selenocysteine in the selenium-dependent formate dehydrogenase of Methanococcus vannielii. Arch. Biochem. Biophys. 195, 255–260 (1979).

CAS  PubMed  PubMed Central  Google Scholar 

Wood, G. E., Haydock, A. K. & Leigh, J. A. Action and adjustment of the formate dehydrogenase genes of the methanogenic archaeon Methanococcus maripaludis. J. Bacteriol. 185, 2548–2554 (2003).

CAS  PubMed  PubMed Central  Google Scholar 

Costa, C., Teixeira, M., LeGall, J., Moura, J. J. G. & Moura, I. Formate dehydrogenase from Desulfovibrio desulfuricans ATCC 27774: Abreast and spectroscopic assuming of the alive sites (heme, iron-sulfur centers and molybdenum). JBIC 2, 198–208 (1997).

CAS  Google Scholar 

Zhang, Y., Romero, H., Salinas, G. & Gladyshev, V. N. Dynamic change of selenocysteine appliance in bacteria: A antithesis amid selenoprotein accident and change of selenocysteine from redox alive cysteine residues. Genome Biol. 7, R94 (2006).

PubMed  PubMed Central  Google Scholar 

Rother, M. & Krzycki, J. A. Selenocysteine, pyrrolysine, and the different activity metabolism of methanogenic Archaea. Archaea 2010, 453642 (2010).

PubMed  PubMed Central  Google Scholar 

Peng, T., Lin, J., Xu, Y.-Z. & Zhang, Y. Comparative genomics reveals new evolutionary and ecological patterns of selenium appliance in bacteria. ISME J. 10, 2048–2059 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Mariotti, M. et al. Change of selenophosphate synthetases: Emergence and alteration of action through absolute duplications and alternate subfunctionalization. Genome Res. 25, 1256–1267 (2015).

CAS  PubMed  PubMed Central  Google Scholar 

Ogawa, K. et al. The nasB operon and nasA gene are appropriate for nitrate/nitrite assimilation in Bacillus subtilis. J. Bacteriol. 177, 1409–1413 (1995).

CAS  PubMed  PubMed Central  Google Scholar 

Suzuki, I., Sugiyama, T. & Omata, T. Primary anatomy and transcriptional adjustment of the gene for nitrite reductase from the cyanobacterium Synechococcus PCC 7942. Plant Cell Physiol. 34, 1311–1320 (1993).

CAS  Google Scholar 

Gangeswaran, R., Lowe, D. J. & Eady, R. R. Purification and assuming of the assimilatory nitrate reductase of Azotobacter vinelandii. Biochem. J. 289(Pt 2), 335–342 (1993).

CAS  PubMed  PubMed Central  Google Scholar 

Rubio, L. M., Flores, E. & Herrero, A. Purification, cofactor analysis, and site-directed mutagenesis of Synechococcus ferredoxin-nitrate reductase. Photosyn. Res. 72, 13–26 (2002).

CAS  PubMed  PubMed Central  Google Scholar 

Lin, J. T., Goldman, B. S. & Stewart, V. Structures of genes nasA and nasB, encoding assimilatory nitrate and nitrite reductases in Klebsiella pneumoniae M5al. J. Bacteriol. 175, 2370–2378 (1993).

CAS  PubMed  PubMed Central  Google Scholar 

Blasco, R., Castillo, F. & Martínez-Luque, M. The assimilatory nitrate reductase from the phototrophic bacterium, Rhodobacter capsulatus E1F1, is a flavoprotein. FEBS Lett. 414, 45–49 (1997).

CAS  PubMed  PubMed Central  Google Scholar 

Krafft, T. & Macy, J. M. Purification and assuming of the respiratory arsenate reductase of Chrysiogenes arsenatis. Eur. J. Biochem. 255, 647–653 (1998).

CAS  PubMed  PubMed Central  Google Scholar 

Afkar, E. et al. The respiratory arsenate reductase from Bacillus selenitireducens ache MLS10. FEMS Microbiol. Lett. 226, 107–112 (2003).

CAS  PubMed  PubMed Central  Google Scholar 

Ellis, P. J., Conrads, T., Hille, R. & Kuhn, P. Clear anatomy of the 100 kDa arsenite oxidase from Alcaligenes faecalis in two clear forms at 1.64 Å and 2.03 Å. Anatomy 9, 125–132 (2001).

CAS  PubMed  PubMed Central  Google Scholar 

Warelow, T. P., Pushie, M. J., Cotelesage, J. J. H., Santini, J. M. & George, G. N. The alive armpit anatomy and catalytic apparatus of arsenite oxidase. Sci. Rep. 7, 1757 (2017).

ADS  PubMed  PubMed Central  Google Scholar 

Karrasch, M., Börner, G. & Thauer, R. K. The molybdenum cofactor of formylmethanofuran dehydrogenase from Methanosarcina barkeri is a molybdopterin guanine dinucleotide. FEBS Lett. 274, 48–52 (1990).

CAS  PubMed  PubMed Central  Google Scholar 

Schmitz, R. A., Albracht, S. P. & Thauer, R. K. A molybdenum and a tungsten isoenzyme of formylmethanofuran dehydrogenase in the thermophilic archaeon Methanobacterium wolfei. Eur. J. Biochem. 209, 1013–1018 (1992).

CAS  PubMed  PubMed Central  Google Scholar 

Yamamoto, I., Saiki, T., Liu, S. M. & Ljungdahl, L. G. Purification and backdrop of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein. J. Biol. Chem. 258, 1826–1832 (1983).

CAS  PubMed  PubMed Central  Google Scholar 

Jones, J. B. & Stadtman, T. C. Selenium-dependent and selenium-independent formate dehydrogenases of Methanococcus vannielii. Separation of the two forms and assuming of the antiseptic selenium-independent form. J. Biol. Chem. 256, 656–663 (1981).

CAS  PubMed  PubMed Central  Google Scholar 

Boratyn, G. M. et al. Domain added lookup time accelerated BLAST. Biol. Direct 7, 12 (2012).

CAS  PubMed  PubMed Central  Google Scholar 

Markowitz, V. M. et al. The chip microbial genomes (IMG) system. Nucl. Acids Res. 34, D344–D348 (2006).

CAS  PubMed  PubMed Central  Google Scholar 

Bertero, M. G. et al. Insights into the respiratory electron alteration alleyway from the anatomy of nitrate reductase A. Nat. Struct. Biol. 10, 681–687 (2003).

CAS  PubMed  PubMed Central  Google Scholar 

Afshar, S., Johnson, E., de Vries, S. & Schröder, I. Backdrop of a thermostable nitrate reductase from the hyperthermophilic archaeon Pyrobaculum aerophilum. J. Bacteriol. 183, 5491–5495 (2001).

CAS  PubMed  PubMed Central  Google Scholar 

Ramírez-Arcos, S., Fernández-Herrero, L. A. & Berenguer, J. A thermophilic nitrate reductase is amenable for the ache specific anaerobic advance of Thermus thermophilus HB8. Biochim. Biophys. Acta 1396, 215–227 (1998).

PubMed  PubMed Central  Google Scholar 

Thorell, H. D., Stenklo, K., Karlsson, J. & Nilsson, T. A gene array for chlorate metabolism in Ideonella dechloratans. Appl. Environ. Microbiol. 69, 5585–5592 (2003).

CAS  PubMed  PubMed Central  Google Scholar 

Schröder, I., Rech, S., Krafft, T. & Macy, J. M. Purification and assuming of the selenate reductase from Thauera selenatis. J. Biol. Chem. 272, 23765–23768 (1997).

PubMed  PubMed Central  Google Scholar 

McDevitt, C. A., Hugenholtz, P., Hanson, G. R. & McEwan, A. G. Molecular assay of dimethyl sulphide dehydrogenase from Rhodovulum sulfidophilum: Its abode in the dimethyl sulphoxide reductase ancestors of microbial molybdopterin-containing enzymes. Mol. Microbiol. 44, 1575–1587 (2002).

CAS  PubMed  PubMed Central  Google Scholar 

Méjean, V. et al. TMAO anaerobic respiration in Escherichia coli: Involvement of the tor operon. Mol. Microbiol. 11, 1169–1179 (1994).

PubMed  PubMed Central  Google Scholar 

Czjzek, M. et al. Clear anatomy of breakable trimethylamine N-oxide reductase from Shewanella massilia at 2.5 Å resolution. J. Mol. Biol. 284, 435–447 (1998).

CAS  PubMed  PubMed Central  Google Scholar 

Pierson, D. E. & Campbell, A. Cloning and nucleotide arrangement of bisC, the structural gene for biotin sulfoxide reductase in Escherichia coli. J. Bacteriol. 172, 2194–2198 (1990).

CAS  PubMed  PubMed Central  Google Scholar 

White, H., Strobl, G., Feicht, R. & Simon, H. Carboxylic acerbic reductase: A new tungsten agitator catalyses the abridgement of non-activated carboxylic acids to aldehydes. Eur. J. Biochem. 184, 89–96 (1989).

CAS  PubMed  PubMed Central  Google Scholar 

Mukund, S. & Adams, M. W. The atypical tungsten-iron-sulfur protein of the hyperthermophilic archaebacterium, Pyrococcus furiosus, is an aldehyde ferredoxin oxidoreductase. Evidence for its accord in a different glycolytic pathway. J. Biol. Chem. 266, 14208–14216 (1991).

CAS  PubMed  PubMed Central  Google Scholar 

Hu, Y., Faham, S., Roy, R., Adams, M. W. W. & Rees, D. C. Formaldehyde ferredoxin oxidoreductase from Pyrococcus furiosus: The 1.85 Å resolution clear anatomy and its mechanistic implications. J. Mol. Biol. 286, 899–914 (1999).

CAS  PubMed  PubMed Central  Google Scholar 

Mukund, S. & Adams, M. W. Assuming of a atypical tungsten-containing formaldehyde ferredoxin oxidoreductase from the hyperthermophilic archaeon, Thermococcus litoralis. A role for tungsten in peptide catabolism. J. Biol. Chem. 268, 13592–13600 (1993).

CAS  PubMed  PubMed Central  Google Scholar 

Mukund, S. & Adams, M. W. Glyceraldehyde-3-phosphate ferredoxin oxidoreductase, a atypical tungsten-containing agitator with a abeyant glycolytic role in the hyperthermophilic archaeon Pyrococcus furiosus. J. Biol. Chem. 270, 8389–8392 (1995).

CAS  PubMed  PubMed Central  Google Scholar 

Park, M.-O., Mizutani, T. & Jones, P. R. Glyceraldehyde-3-phosphate ferredoxin oxidoreductase from Methanococcus maripaludis. J. Bacteriol. 189, 7281–7289 (2007).

CAS  PubMed  PubMed Central  Google Scholar 

Reher, M., Gebhard, S. & Schönheit, P. Glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR) and nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN), key enzymes of the corresponding adapted Embden–Meyerhof pathways in the hyperthermophilic crenarchaeota Pyrobaculum aerophilum and Aeropyrum pernix. FEMS Microbiol. Lett. 273, 196–205 (2007).

CAS  PubMed  PubMed Central  Google Scholar 

Vorholt, J. A., Vaupel, M. & Thauer, R. K. A selenium-dependent and a selenium-independent formylmethanofuran dehydrogenase and their transcriptional adjustment in the hyperthermophilic Methanopyrus kandleri. Mol. Microbiol. 23, 1033–1042 (1997).

CAS  PubMed  PubMed Central  Google Scholar 

Nakamura, T., Yamada, K. D., Tomii, K. & Katoh, K. Parallelization of MAFFT for all-embracing assorted arrangement alignments. Bioinformatics 34, 2490–2492 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: A apparatus for automatic alignment accent in all-embracing phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

PubMed  PubMed Central  Google Scholar 

Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast archetypal alternative for authentic phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Le, S. Q., Dang, C. C. & Gascuel, O. Modeling protein change with several amino acerbic backup matrices depending on armpit rates. Mol. Biol. Evol. 29, 2921–2936 (2012).

CAS  Google Scholar 

Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of ample phylogenetic trees. In 2010 Gateway Computing Environments Workshop (GCE) 1–8 (2010). https://doi.org/10.1109/GCE.2010.5676129.

Letunic, I. & Bork, P. Interactive Timberline of Activity (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

B Catling 2 Top Risks Of B Catling – b catling
| Allowed to help my blog site, in this particular moment We’ll teach you with regards to keyword. And after this, this is actually the primary picture:

Last Updated: July 8th, 2020 by admin
Dog Cat Hybrid What Makes Dog Cat Hybrid So Addictive That You Never Want To Miss One? Insurance New Normal 1 Facts That Nobody Told You About Insurance New Normal Insurance Law Indonesia 1 Great Insurance Law Indonesia Ideas That You Can Share With Your Friends Australian Cattle Dog 1 Months Old Learn The Truth About Australian Cattle Dog 1 Months Old In The Next 1 Seconds Cat Noir Ring 1 Advantages Of Cat Noir Ring And How You Can Make Full Use Of It Stock Quote Hpq Seven Things To Expect When Attending Stock Quote Hpq 2 Dog Crate Seven Thoughts You Have As 2 Dog Crate Approaches Cat Keyboard Why You Should Not Go To Cat Keyboard Home Decor Ideas For 1 Bhk Flat Why Is Everyone Talking About Home Decor Ideas For 1 Bhk Flat?